Biological hydrogen production using a membrane bioreactor.

نویسندگان

  • Sang-Eun Oh
  • Prabha Iyer
  • Mary Ann Bruns
  • Bruce E Logan
چکیده

A cross-flow membrane was coupled to a chemostat to create an anaerobic membrane bioreactor (MBR) for biological hydrogen production. The reactor was fed glucose (10,000 mg/L) and inoculated with a soil inoculum heat-treated to kill non-spore-forming methanogens. Hydrogen gas was consistently produced at a concentration of 57-60% in the headspace under all conditions. When operated in chemostat mode (no flow through the membrane) at a hydraulic retention time (HRT) of 3.3 h, 90% of the glucose was removed, producing 2200 mg/L of cells and 500 mL/h of biogas. When operated in MBR mode, the solids retention time (SRT) was increased to SRT = 12 h producing a solids concentration in the reactor of 5800 mg/L. This SRT increased the overall glucose utilization (98%), the biogas production rate (640 mL/h), and the conversion efficiency of glucose-to-hydrogen from 22% (no MBR) to 25% (based on a maximum of 4 mol-H(2)/mol-glucose). When the SRT was increased from 5 h to 48 h, glucose utilization (99%) and biomass concentrations (8,800 +/- 600 mg/L) both increased. However, the biogas production decreased (310 +/- 40 mL/h) and the glucose-to-hydrogen conversion efficiency decreased from 37 +/- 4% to 18 +/- 3%. Sustained permeate flows through the membrane were in the range of 57 to 60 L/m(2) h for three different membrane pore sizes (0.3, 0.5, and 0.8 microm). Most (93.7% to 99.3%) of the membrane resistance was due to internal fouling and the reversible cake resistance, and not the membrane itself. Regular backpulsing was essential for maintaining permeate flux through the membrane. Analysis of DNA sequences using ribosomal intergenic spacer analysis indicated bacteria were most closely related to members of Clostridiaceae and Flexibacteraceae, including Clostridium acidisoli CAC237756 (97%), Linmingia china AF481148 (97%), and Cytophaga sp. MDA2507 AF238333 (99%). No PCR amplification of 16s rRNA genes was obtained when archaea-specific primers were used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Bioethanol Production in Batch Fermentation by Pervaporation Using a PDMS Membrane Bioreactor

The integration of batch fermentation and membrane-based pervaporation process in a membrane bioreactor (MBR) was studied to enhance bioethanol production compared to conventional batch fermentation operated at optimum condition. For this purpose, a laboratory-scale MBR system was designed and fabricated. Dense hydrophobic Polydimethylsiloxane (PDMS) membrane was used for pervaporation. For fer...

متن کامل

Performance of Biological hydrogen Production Process from Synthesis Gas, Mass Transfer in Batch and Continuous Bioreactors

Biological hydrogen production by anaerobic bacterium, Rhodospirillum rubrum was studied in batch and continuous bioreactors using synthesis gas (CO) as substrate. The systems were operated at ambient temperature and pressure. Correlations available in the literature were used to estimate the gas-liquid mass transfer coefficients (KLa) in batch reactor. Based on experimental results for the con...

متن کامل

Bioreactor Scale-up for Water-Gas Shift Reaction

A scale-up study has been performed with three different size reactors to establish the optimum operating conditions for the hydrogen production from synthesis gas by biological water-gas shift reaction using the photosynthetic bacterium Rhodosprilliunt rubrum. Optimum medium composition and operating conditions previously determined in a bench scale 1.25 L continuous stirred tank reactor (CSTR...

متن کامل

Membrane Biological Reactors (MBR) and Their Applications for Water Reuse

The term 'membrane bioreactor' expresses a combination of activated sludge and membrane separation processes. The need to processes like sedimentation and disinfection used in common methods is eliminated through MBR systems in a way that membranes are placed into or out of an aeration tank and the vacuumed wastewater created by the suction pump is pulled up from inside the membranes and leaves...

متن کامل

Membrane Biological Reactors (MBR) and Their Applications for Water Reuse

The term 'membrane bioreactor' expresses a combination of activated sludge and membrane separation processes. The need to processes like sedimentation and disinfection used in common methods is eliminated through MBR systems in a way that membranes are placed into or out of an aeration tank and the vacuumed wastewater created by the suction pump is pulled up from inside the membranes and leaves...

متن کامل

The Study of Organic Removal Efficiency and Membrane Fouling in a Submerged Membrane Bioreactor Treating Vegetable Oil Wastewater

The characterizations of vegetable oil wastewater (VOW) are unpleasant odor, dark color, and high organic contents, including large amounts of oil and grease (O&G), chemical oxygen demand (COD), fatty acids and lipids. Therefore, VOWs should be treated efficiently to avoid the environment pollution. The aim of present study was the investigation of VOW biological treatment using membrane biorea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 87 1  شماره 

صفحات  -

تاریخ انتشار 2004